Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401618, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712450

RESUMEN

Heterointerface engineering is presently considered a valuable strategy for enhancing the microwave absorption (MA) properties of materials via compositional modification and structural design. In this study, a sulfur-doped multi-interfacial composite (Fe7S8/NiS@C) coated with NiFe-layered double hydroxides (LDHs) is successfully prepared using a hydrothermal method and post-high-temperature vulcanization. When assembled into twisted surfaces, the NiFe-LDH nanosheets exhibit porous morphologies, improving impedance matching, and microwave scattering. Sulfur doping in composites generates heterointerfaces, numerous sulfur vacancies, and lattice defects, which facilitate the polarization process to enhance MA. Owing to the controllable heterointerface design, the unique porous structure induced multiple heterointerfaces, numerous vacancies, and defects, endowing the Fe7S8/NiS@C composite with an enhanced MA capability. In particular, the minimum reflection loss (RLmin) value reached -58.1 dB at 15.8 GHz at a thickness of 2.1 mm, and a broad effective absorption bandwidth (EAB) value of 7.3 GHz is achieved at 2.5 mm. Therefore, the Fe7S8/NiS@C composite exhibits remarkable potential as a high-efficiency MA material owing to the synergistic effects of the polarization processes, multiple scatterings, porous structures, and impedance matching.

2.
Adv Sci (Weinh) ; : e2401207, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704676

RESUMEN

Developing high-efficiency and stable bifunctional electrocatalysts for water splitting remains a great challenge. Herein, NiMoO4 nanowires as sacrificial templates to synthesize Mo-doped NiFe Prussian blue analogs are employed, which can be easily phosphorized to Mo-doped Fe2xNi2(1-x)P nanotubes (Mo-FeNiP NTs). This synthesis method enables the controlled etching of NiMoO4 nanowires that results in a unique hollow nanotube architecture. As a bifunctional catalyst, the Mo-FeNiP NTs present lower overpotential and Tafel slope of 151.3 (232.6) mV at 100 mA cm-2 and 76.2 (64.7) mV dec-1 for HER (OER), respectively. Additionally, it only requires an ultralow cell voltage of 1.47 V to achieve 10 mA cm-2 for overall water splitting and can steadily operate for 200 h at 100 mA cm-2. First-principles calculations demonstrate that Mo doping can effectively adjust the electron redistribution of the Ni hollow sites to optimize the hydrogen adsorption-free energy for HER. Besides, in situ Raman characterization reveals the dissolving of doped Mo can promote a rapid surface reconstruction on Mo-FeNiP NTs to dynamically stable (Fe)Ni-oxyhydroxide layers, serving as the actual active species for OER. The work proposes a rational approach addressed by electron manipulation and surface reconstruction of bimetallic phosphides to regulate both the HER and OER activity.

3.
Adv Mater ; : e2404213, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695334

RESUMEN

Developing efficient and robust electrocatalysts toward the oxygen evolution reaction (OER) is critical for proton exchange membrane water electrolysis (PEMWE). RuO2 possesses intrinsically high OER activity, but the concurrent electrochemical dissolution leads to rapid deactivation. Here a unique RuO2 catalyst containing metallic Ru─Ru interactions (m-RuO2) is reported, which maintains stability in practical PEMWE for 100 h at 60 °C and 1 A cm-2. Experimental and theoretical investigations suggest that the presence of Ru─Ru interactions significantly increases the energy barrier for the formation of RuO2(OH)2, which is a key intermediate for Ru dissolution, and hence substantially mitigates the electrochemical corrosion of m-RuO2. Meanwhile, the Ru4d band center downshifts, accordingly, ensuring the high OER activity, and the participation of lattice oxygen in the OER is also suppressed at the Ru─Ru sites, further contributing to the enhanced durability. Interestingly, such enhanced stability is also dependent on the size of metallic Ru─Ru cluster, where the energy barrier is further increased for Ru3, but is decreased for Ru5. These results highlight the significance of local coordination structure modulation on the electrochemical stability of RuO2 and open a feasible avenue toward the development of robust OER electrocatalysts for high-performance PEMWE.

4.
Small ; : e2400783, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573959

RESUMEN

Endowing conventional materials with specific functions that are hardly available is invariably of significant importance but greatly challenging. TiO2 is proven to be highly active for the photocatalytic hydrogen evolution while intrinsically inert for electrocatalytic hydrogen evolution reaction (HER) due to its poor electrical conductivity and unfavorable hydrogen adsorption/desorption behavior. Herein, the first activation of inert TiO2 for electrocatalytic HER is demonstrated by synergistically modulating the positions of d-band center and triggering hydrogen spillover through the dual doping-induced partial phase transition. The N, F co-doping-induced partial phase transition from anatase to rutile phase in TiO2 (AR-TiO2|(N,F)) exhibits extraordinary HER performance with overpotentials of 74, 80, and 142 mV at a current density of 10 mA cm-2 in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M phosphate-buffered saline electrolytes, respectively, which are substantially better than pure TiO2, and even superior to the benchmark Pt/C catalysts. These findings may open a new avenue for the development of low-cost alternative to noble metal catalysts for electrocatalytic hydrogen production.

5.
ACS Nano ; 18(17): 11416-11424, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38625014

RESUMEN

CO plays a crucial role as an intermediate in electrochemical CO2 conversion to generate multicarbon (C2+) products. However, optimizing the coverage of the CO intermediate (*CO) to improve the selectivity of C2+ products remains a great challenge. Here, we designed a hierarchically structured double hollow spherical nanoreactor featuring atomically dispersed nickel (Ni) atoms as the core and copper (Cu) nanoparticles as the shell, which can greatly improve the catalytic activity and selectivity for C2+ compounds. Within this configuration, CO generated at the active Ni sites on the inner layer accumulates in the cavity before spilling over neighboring Cu sites on the outer layer, thus enhancing CO dimerization within the cavity. Notably, this setup achieves a sustained faradaic efficiency of 74.4% for C2+ production, with partial current densities reaching 337.4 mA cm-2. In situ Raman spectroscopy and finite-element method (FEM) simulations demonstrate that the designed local CO generator can effectively increase the local CO concentration and restrict CO evolution, ultimately boosting C-C coupling. The hierarchically ordered architectural design represents a promising solution for achieving highly selective C2+ compound production in the electroreduction of CO2.

6.
Sci Adv ; 10(10): eadn2265, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446894

RESUMEN

Metal anodes are emerging as culminating solutions for the development of energy-dense batteries in either aprotic, aqueous, or solid battery configurations. However, unlike traditional intercalation electrodes, the low utilization of "hostless" metal anodes due to the intrinsically disordered plating/stripping impedes their practical applications. Herein, we report ordered planar plating/stripping in a bulk zinc (Zn) anode to achieve an extremely high depth of discharge exceeding 90% with negligible thickness fluctuation and long-term stable cycling. The Zn can be plated/stripped with (0001)Zn preferential orientation throughout the consecutive charge/discharge process, assisted by a self-assembled supramolecular bilayer at the Zn anode-electrolyte interface. Through real-time tracking of the Zn atoms migration, we reveal that the ordered planar plating/stripping is driven by the construction of in-plane Zn─N bindings and the gradient energy landscape at the reaction fronts. The breakthrough results provide alternative insights into the ordered plating/stripping of metal anodes toward rechargeable energy-dense batteries.

7.
Small ; : e2400965, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506595

RESUMEN

Nanostructured metal hydrides with unique morphology and improved hydrogen storage properties have attracted intense interests. However, the study of the growth process of highly active borohydrides remains challenging. Herein, for the first time the synthesis of LiBH4 nanorods through a hydrogen-assisted one-pot solvothermal reaction is reported. Reaction of n-butyl lithium with triethylamine borane in n-hexane under 50 bar of H2 at 40-100 °C gives rise to the formation of the [100]-oriented LiBH4 nanorods with 500-800 nm in diameter, whose growth is driven by orientated attachment and ligand adsorption. The unique morphology enables the LiBH4 nanorods to release hydrogen from ≈184 °C, 94 °C lower than the commercial sample (≈278 °C). Hydrogen release amounts to 13 wt% within 40 min at 450 °C with a stable cyclability, remarkably superior to the commercial LiBH4 (≈9.1 wt%). More importantly, up to 180 °C reduction in the onset temperature of hydrogenation is successfully attained by the nanorod sample with respect to the commercial counterpart. The LiBH4 nanorods show no foaming during dehydrogenation, which improves the hydrogen cycling performance. The new approach will shed light on the preparation of nanostructured metal borohydrides as advanced functional materials.

8.
Small ; : e2310530, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317526

RESUMEN

Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2 /CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2 CO3 nucleation sites for homogeneous discharge product growth. The CoSe2 /CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2 , a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2 , surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2 /Li adsorption and low Li2 CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2 /CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.

9.
Small ; : e2311500, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372501

RESUMEN

Singlet oxygen (term symbol 1 Δg , hereafter 1 O2 ), a reactive oxygen species, has recently attracted increasing interest in the field of rechargeable batteries and electrocatalysis and photocatalysis. These sustainable energy conversion and storage technologies are of vital significance to replace fossil fuels and promote carbon neutrality and finally tackle the energy crisis and climate change. Herein, the recent progresses of 1 O2 for energy storage and conversion is summarized, including physical and chemical properties, formation mechanisms, detection technologies, side reactions in rechargeable batteries and corresponding inhibition strategies, and applications in electrocatalysis and photocatalysis. The formation mechanisms and inhibition strategies of 1 O2 in particular aprotic lithium-oxygen (Li-O2 ) batteries are highlighted, and the applications of 1 O2 in photocatalysis and electrocatalysis is also emphasized. Moreover, the confronting challenges and promising directions of 1 O2 in energy conversion and storage systems are discussed.

10.
Adv Mater ; : e2313406, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319004

RESUMEN

Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.

11.
ACS Nano ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334290

RESUMEN

LiBH4 is one of the most promising candidates for use in all-solid-state lithium batteries. However, the main challenges of LiBH4 are the poor Li-ion conductivity at room temperature, excessive dendrite formation, and the narrow voltage window, which hamper practical application. Herein, we fabricate a flexible polymeric electronic shielding layer on the particle surfaces of LiBH4. The electronic conductivity of the primary LiBH4 is reduced by 2 orders of magnitude, to 1.15 × 10-9 S cm-1 at 25 °C, due to the high electron affinity of the electronic shielding layer; this localizes the electrons around the BH4- anions, which eliminates electronic leakage from the anionic framework and leads to a 68-fold higher critical electrical bias for dendrite growth on the particle surfaces. Contrary to the previously reported work, the shielding layer also ensures fast Li-ion conduction due to the fast-rotational dynamics of the BH4- species and the high Li-ion (carrier) concentration on the particle surfaces. In addition, the flexibility of the layer guarantees its structural integrity during Li plating and stripping. Therefore, our LiBH4-based solid-state electrolyte exhibits a high critical current density (11.43 mA cm-2) and long cycling stability of 5000 h (5.70 mA cm-2) at 25 °C. More importantly, the electrolyte had a wide operational temperature window (-30-150 °C). We believe that our findings provide a perspective with which to avoid dendrite formation in hydride solid-state electrolytes and provide high-performance all-solid-state lithium batteries.

12.
Small ; : e2309252, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217311

RESUMEN

The energy transition to renewables necessitates innovative storage solutions beyond the capacities of lithium-ion batteries. Aluminum-ion batteries (AIBs), particularly their aqueous variants (AAIBs), have emerged as potential successors due to their abundant resources, electrochemical advantages, and eco-friendliness. However, they grapple with achieving their theoretical voltage potential, often yielding less than expected. This perspective article provides a comprehensive examination of the voltage challenges faced by AAIBs, attributing gaps to factors such as the aluminum reduction potential, hydrogen evolution reaction, and aluminum's inherent passivation. Through a critical exploration of methodologies, strategies, such as underpotential deposition, alloying, interface enhancements, tailored electrolyte compositions, and advanced cathode design, are proposed. This piece seeks to guide researchers in harnessing the full potential of AAIBs in the global energy storage landscape.

13.
Nat Commun ; 15(1): 928, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296957

RESUMEN

Non-dissociative chemisorption solid-state storage of hydrogen molecules in host materials is promising to achieve both high hydrogen capacity and uptake rate, but there is the lack of non-dissociative hydrogen storage theories that can guide the rational design of the materials. Herein, we establish generalized design principle to design such materials via the first-principles calculations, theoretical analysis and focused experimental verifications of a series of heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials as efficient non-dissociative solid-state hydrogen storage materials. An intrinsic descriptor has been proposed to correlate the inherent properties of dopants with the hydrogen storage capability of the carbon-based host materials. The generalized design principle and the intrinsic descriptor have the predictive ability to screen out the best dual-doped-graphene-supported Ca single-atom hydrogen storage materials. The dual-doped materials have much higher hydrogen storage capability than the sole-doped ones, and exceed the current best carbon-based hydrogen storage materials.

14.
Sci Bull (Beijing) ; 69(1): 49-58, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37973461

RESUMEN

Solid-state sodium metal batteries utilizing inorganic solid electrolytes (SEs) hold immense potentials such as intrinsical safety, high energy density, and environmental sustainability. However, the interfacial inhomogeneity/instability at the anode-SE interface usually triggers the penetration of sodium dendrites into the electrolyte, leading to short circuit and battery failure. Herein, confronting with the original nonuniform and high-resistance solid electrolyte interphase (SEI) at the Na-Na3Zr2Si2PO12 interface, an oxygen-regulated SEI innovative approach is proposed to enhance the cycling stability of anode-SEs interface, through a spontaneous reaction between the metallic sodium (containing trace amounts of oxygen) and the Na3Zr2Si2PO12 SE. The oxygen-regulated spontaneous SEI is thin, uniform, and kinetically stable to facilitate homogenous interfacial Na+ transportation. Benefitting from the optimized SEI, the assembled symmetric cell exhibits an ultra-stable sodium plating/stripping cycle for over 6600 h under a practical capacity of 3 mAh cm-2. Quasi-solid-state batteries with Na3V2(PO4)3 cathode deliver excellent cyclability over 500 cycles at a rate of 0.5 C (1 C = 117 mA cm-2) with a high capacity retention of 95.4%. This oxygen-regulated SEI strategy may offer a potential avenue for the future development of high-energy-density solid-state metal batteries.

15.
Adv Mater ; 36(1): e2308332, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37730213

RESUMEN

Inorganic all-solid-state sodium batteries (IASSSBs) are emerged as promising candidates to replace commercial lithium-ion batteries in large-scale energy storage systems due to their potential advantages, such as abundant raw materials, robust safety, low price, high-energy density, favorable reliability and stability. Inorganic sodium solid electrolytes (ISSEs) are an indispensable component of IASSSBs, gaining significant attention. Herein, this review begins by discussing the fundamentals of ISSEs, including their ionic conductivity, mechanical property, chemical and electrochemical stabilities. It then presents the crystal structures of advanced ISSEs (e.g., ß/ß''-alumina, NASICON, sulfides, complex hydride and halide electrolytes) and the related issues, along with corresponding modification strategies. The review also outlines effective approaches for forming intimate interfaces between ISSEs and working electrodes. Finally, current challenges and critical perspectives for the potential developments and possible directions to improve interfacial contacts for future practical applications of ISSEs are highlighted. This comprehensive review aims to advance the understanding and development of next-generation rechargeable IASSSBs.

16.
Small ; 20(8): e2306739, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817362

RESUMEN

A highly reversible zinc anode is crucial for the commercialization of zinc-ion batteries. However, the change in the microstructure of the electric double layer originated from the dynamic change in charge density on the electrode greatly impacts anode reversibility during charge/discharge, which is rarely considered in previous research. Herein, the zwitterion additive is employed to create an adaptive interface by coupling the transient zwitterion dynamics upon the change of interfacial charge density. Ab initio molecular dynamics simulations suggest the molecular orientation and adsorption groups of zwitterions will be determined by the charging state of the electrode. ZnSO4 electrolyte with zwitterion fulfills a highly reversible Zn anode with an average Coulombic efficiency of up to 99.85%. Zn/Zn symmetric cells achieve greatly enhanced cycling stability for 700 h with extremely small voltage hysteresis of 29 mV under 5 mA cm-2 with 5 mAh cm-2 . This study validates the adaptive interface based on transient dynamics of zwitterions, which sheds new light on developing highly reversible metal anodes with a high utilization rate.

17.
Adv Sci (Weinh) ; 11(8): e2305061, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939285

RESUMEN

Aqueous zinc-halogen batteries (AZHBs) have emerged as promising candidates for energy storage applications due to their high security features and low cost. However, several challenges including natural subliming, sluggish reaction kinetics, and shuttle effect of halogens, as well as dendrite growth of the zinc (Zn) anode, have hindered their large-scale commercialization. In this review, first the fundamental mechanisms and scientific issues associated with AZHBs are summarized. Then the research issues and progresses related to the cathode, separator, anode, and electrolyte are discussed. Additionally, emerging research opportunities in this field is explored. Finally, ideas and prospects for the future development of AZHBs are presented. The objective of this review is to stimulate further exploration, foster the advancement of AZHBs, and contribute to the diversified development of electrochemical energy storage.

18.
Heliyon ; 9(11): e21765, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027989

RESUMEN

Metal hydrides have been demonstrated as one of the promising high-capacity anode materials for Li-ion batteries. Herein, we report the electrochemical properties and lithium storage mechanism of a Li-rich complex metal hydride (Li3AlH6). Li3AlH6 exhibits a lithiation capacity of ∼1729 mAh/g with a plateau potential of ∼0.33 V vs. Li+/Li at the first discharge cycle. Experimental results demonstrate that Li3AlH6 is converted into LiH and LiAl in the initial electrochemical lithiation process. In addition, Li3AlH6 also possesses a good cycling stability that 71 % of the second discharge capacity is retained after 20 cycles. More importantly, the cycling performance of Li3AlH6 can be improved to 100 cycles via adjusting electrolyte composition. This study provides a new approach for developing the lithium storage properties of anode materials for Li-ion batteries.

19.
ACS Nano ; 17(17): 16478-16490, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37589462

RESUMEN

Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage devices due to their high energy density and low cost. However, the large potassium-ion radius leads to its sluggish diffusion kinetics during intercalation into the lattice of the electrode material, resulting in electrode pulverization and poor cycle stability. Herein, vanadium trioxide anodes with different oxygen vacancy concentrations (V2O2.9, V2O2.8, and V2O2.7 determined by the neutron diffraction) are developed for KIBs. The V2O2.8 anode is optimal and exhibits excellent potassium storage performance due to the realization of expanded interlayer spacing and efficient ion/electron transport. In situ X-ray diffraction indicates that V2O2.8 is a zero-strain anode with a volumetric strain of 0.28% during the charge/discharge process. Density functional theory calculations show that the impacts of oxygen defects are embodied in reducing the band gap, increasing electron transfer ability, and lowering the diffusion energy barriers for potassium ions. As a result, the electrode of nanosized V2O2.8 embedded in porous reticular carbon (V2O2.8@PRC) delivers high reversible capacity (362 mAh g-1 at 0.05 A g-1), ultralong cycling stability (98.8% capacity retention after 3000 cycles at 2 A g-1), and superior pouch-type full-cell performance (221 mAh g-1 at 0.05 A g-1). This work presents an oxygen defect engineering strategy for ultrastable KIBs.

20.
ACS Appl Mater Interfaces ; 15(34): 40558-40568, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37581606

RESUMEN

High thermal stability and sluggish absorption/desorption kinetics are still important limitations for using magnesium hydride (MgH2) as a solid-state hydrogen storage medium. One of the most effective solutions in improving hydrogen storage properties of MgH2 is to introduce a suitable catalyst. Herein, a novel nanoparticulate ZrNi with 10-60 nm in size was successfully prepared by co-precipitation followed by a molten-salt reduction process. The 7 wt % nano-ZrNi-catalyzed MgH2 composite desorbs 6.1 wt % hydrogen starting from ∼178 °C after activation, lowered by 99 °C relative to the pristine MgH2 (∼277 °C). The dehydrided sample rapidly absorbs ∼5.5 wt % H2 when operating at 150 °C for 8 min. The remarkably improved hydrogen storage properties are reasonably ascribed to the in situ formation of ZrH2, ZrNi2, and Mg2NiH4 caused by the disproportionation reaction of nano-ZrNi during the first de-/hydrogenation cycle. These catalytic active species are uniformly dispersed in the MgH2 matrix, thus creating a multielement, multiphase, and multivalent environment, which not only largely favors the breaking and rebonding of H-H bonds and the transfer of electrons between H- and Mg2+ but also provides multiple hydrogen diffusion channels. These findings are of particularly scientific importance for the design and preparation of highly active catalysts for hydrogen storage in light-metal hydrides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...